Embedding, Distance Estimation and Object Location in Networks
نویسنده
چکیده
Concurrent with numerous theoretical results on metric embeddings, a growing body of research in the networking community has studied the distance matrix defined by node-to-node latencies in the Internet, resulting in a number of recent approaches that approximately embed this distance matrix into low-dimensional Euclidean space. A fundamental distinction between the theoretical approaches to embeddings and this recent Internet-related work is that the latter operates under the additional constraint that it is only feasible to measure a linear number of node pairs, and typically in a highly structured way. Indeed, the most common framework here is a beacon-based approach: one randomly chooses a small number of nodes ('beacons') in the network, and each node measures its distance to these beacons only. Moreover, beacon-based algorithms are also designed for the more basic problem of triangulation, in which one uses the triangle inequality to infer the distances that have not been measured. We give algorithms with provable performance guarantees for triangulation and embedding. We show that in addition to multiplicative error in the distances, performance guarantees for beacon-based algorithms typically must include a notion of " slack " – a certain fraction of all distances may be arbitrarily distorted. For arbitrary metrics, we give a beacon-based embedding algorithm that achieves constant distortion on a (1 −)-fraction of distances; this provides some theoretical justification for the success of the recent networking algorithms, and forms an interesting contrast with lower bounds showing that it is not possible to embed all distances with constant distortion. For doubling metrics (which have been proposed as a reasonable abstraction of Internet latencies), we show that triangulation with a constant number of beacons can achieve multiplicative error 1 + δ on a (1 −)-fraction of distances, for arbitrarily small constants , δ. We extend these results in a number of directions: embeddings with slack that work for all at once; distributed algorithms for triangulation and embedding with low overhead on all participating nodes; distributed triangulation with guarantees for all node pairs; node-labeling problems for graphs and metrics; systems project on location-aware node selection in a large-scale distributed network. till present Alex has been a graduate student with the Computer Science department of Cornell University. Following his candidacy exam, he received a M.S. in Computer Science in 2004. He expects to graduate with a Ph.D. in August 2006. After Cornell he is going for a one-year postdoc at Brown University. …
منابع مشابه
A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملMulti-Area State Estimation Based on PMU Measurements in Distribution Networks
State estimation in the energy management center of active distribution networks has attracted many attentions. Considering an increase in complexity and real-time management of active distribution networks and knowing the network information at each time instant are necessary. This article presents a two-step multi-area state estimation method in balanced active distribution networks. The prop...
متن کاملMultiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملA NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملApplication of n-distance balanced graphs in distributing management and finding optimal logistical hubs
Optimization and reduction of costs in management of distribution and transportation of commodity are one of the main goals of many organizations. Using suitable models in supply chain in order to increase efficiency and appropriate location for support centers in logistical networks is highly important for planners and managers. Graph modeling can be used to analyze these problems and many oth...
متن کاملOptimal Current Meter Placement for Accurate Fault Location Purpose using Dynamic Time Warping
This paper presents a fault location technique for transmission lines with minimum current measurement. This algorithm investigates proper current ratios for fault location problem based on thevenin theory in faulty power networks and calculation of short circuit currents in each branch. These current ratios are extracted regarding lowest sensitivity on thevenin impedance variations of the netw...
متن کامل